Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Yeast ; 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613186

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.

2.
Front Cardiovasc Med ; 11: 1340199, 2024.
Article En | MEDLINE | ID: mdl-38333413

Background: Calcific aortic valve disease (CAVD) is one of the most prevalent valvular diseases and is the second most common cause for cardiac surgery. However, the mechanism of CAVD remains unclear. This study aimed to investigate the role of pyroptosis-related genes in CAVD by performing comprehensive bioinformatics analysis. Methods: Three microarray datasets (GSE51472, GSE12644 and GSE83453) and one RNA sequencing dataset (GSE153555) were obtained from the Gene Expression Omnibus (GEO) database. Pyroptosis-related differentially expressed genes (DEGs) were identified between the calcified and the normal valve samples. LASSO regression and random forest (RF) machine learning analyses were performed to identify pyroptosis-related DEGs with diagnostic value. A diagnostic model was constructed with the diagnostic candidate pyroptosis-related DEGs. Receiver operating characteristic (ROC) curve analysis was performed to estimate the diagnostic performances of the diagnostic model and the individual diagnostic candidate genes in the training and validation cohorts. CIBERSORT analysis was performed to estimate the differences in the infiltration of the immune cell types. Pearson correlation analysis was used to investigate associations between the diagnostic biomarkers and the immune cell types. Immunohistochemistry was used to validate protein concentration. Results: We identified 805 DEGs, including 319 down-regulated genes and 486 up-regulated genes. These DEGs were mainly enriched in pathways related to the inflammatory responses. Subsequently, we identified 17 pyroptosis-related DEGs by comparing the 805 DEGs with the 223 pyroptosis-related genes. LASSO regression and RF algorithm analyses identified three CAVD diagnostic candidate genes (TREM1, TNFRSF11B, and PGF), which were significantly upregulated in the CAVD tissue samples. A diagnostic model was constructed with these 3 diagnostic candidate genes. The diagnostic model and the 3 diagnostic candidate genes showed good diagnostic performances with AUC values >0.75 in both the training and the validation cohorts based on the ROC curve analyses. CIBERSORT analyses demonstrated positive correlation between the proportion of M0 macrophages in the valve tissues and the expression levels of TREM1, TNFRSF11B, and PGF. Conclusion: Three pyroptosis-related genes (TREM1, TNFRSF11B and PGF) were identified as diagnostic biomarkers for CAVD. These pyroptosis genes and the pro-inflammatory microenvironment in the calcified valve tissues are potential therapeutic targets for alleviating CAVD.

3.
Phytochem Anal ; 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38191127

INTRODUCTION: Toddalia asiatica (TA) is a classical traditional Chinese medicine used to treat rheumatoid arthritis and contusions. However, research regarding TA quality control is currently limited. OBJECTIVE: We aimed to establish a strategy for identifying quality markers that can be used for the evaluation of the quality of TA. METHOD: A rapid and efficient ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantitative determination of 19 compounds in TA from different regions. Then, the extraction process of TA was successively optimized by single-factor optimization and response surface methodology. Moreover, chemometrics was employed to confirm the correlation between quality and target compounds. RESULTS: Utilizing the UHPLC-MS/MS method, separation of the 19 bioactive compounds was achieved within 14 min. The method was validated in terms of linearity (r2 > 0.9982), precision (0.08%-3.70%), repeatability (0.50%-2.54%), stability (2.26%-5.46%), and recovery (95.8%-113%). The optimal extraction process (extraction solvent, 65% ethanol aqueous solution; solid-liquid ratio, 1:20; extraction time, 25 min) was determined with the total content of 19 bioactive compounds as indicator. Significant disparities were observed in the contents of target compounds across different batches of TA. Besides, all samples could be categorized into two distinct groups, and magnoflorine, (-)-lyoniresinol, nitidine chloride, norbraylin, skimmianine, and decarine were identified as quality markers. CONCLUSION: In the present study, we developed a strategy to improve the quality control of TA. In consideration of the pharmacodynamic activity and statistical differences, six compounds are proposed as quality markers for TA.

4.
Bioengineering (Basel) ; 10(11)2023 Nov 20.
Article En | MEDLINE | ID: mdl-38002457

The Cobb angle (CA) serves as the principal method for assessing spinal deformity, but manual measurements of the CA are time-consuming and susceptible to inter- and intra-observer variability. While learning-based methods, such as SpineHRNet+, have demonstrated potential in automating CA measurement, their accuracy can be influenced by the severity of spinal deformity, image quality, relative position of rib and vertebrae, etc. Our aim is to create a reliable learning-based approach that provides consistent and highly accurate measurements of the CA from posteroanterior (PA) X-rays, surpassing the state-of-the-art method. To accomplish this, we introduce SpineHRformer, which identifies anatomical landmarks, including the vertices of endplates from the 7th cervical vertebra (C7) to the 5th lumbar vertebra (L5) and the end vertebrae with different output heads, enabling the calculation of CAs. Within our SpineHRformer, a backbone HRNet first extracts multi-scale features from the input X-ray, while transformer blocks extract local and global features from the HRNet outputs. Subsequently, an output head to generate heatmaps of the endplate landmarks or end vertebra landmarks facilitates the computation of CAs. We used a dataset of 1934 PA X-rays with diverse degrees of spinal deformity and image quality, following an 8:2 ratio to train and test the model. The experimental results indicate that SpineHRformer outperforms SpineHRNet+ in landmark detection (Mean Euclidean Distance: 2.47 pixels vs. 2.74 pixels), CA prediction (Pearson correlation coefficient: 0.86 vs. 0.83), and severity grading (sensitivity: normal-mild; 0.93 vs. 0.74, moderate; 0.74 vs. 0.77, severe; 0.74 vs. 0.7). Our approach demonstrates greater robustness and accuracy compared to SpineHRNet+, offering substantial potential for improving the efficiency and reliability of CA measurements in clinical settings.

5.
Chem Mater ; 35(17): 6990-6997, 2023 Sep 12.
Article En | MEDLINE | ID: mdl-37719032

The effect of sequence structure on the self-healing and shape-memory properties of copolymer-tethered brush particle films was investigated and compared to linear copolymer analogs. Poly(n-butyl acrylate-co-methyl methacrylate), P(BA-co-MMA), and linear and brush analogs with controlled gradient and statistical sequence were synthesized by atom transfer radical polymerization (ATRP). The effect of sequence on self-healing in BA/MMA copolymer brush particle hybrids followed similar trends as for linear analogs. Most rapid restoration of mechanical properties was found for statistical copolymer sequence; an increase of the high Tg (MMA) component provided a path to raise the material's modulus while retaining self-heal ability. Creep testing revealed profound differences between linear and brush systems. While linear copolymers featured substantial viscous deformation when exposed to constant stress in the linear regime, brush analogs displayed minimal permanent deformation and featured shape restoration. The reduction of flow was interpreted to be a consequence of slow cooperative relaxation due to the complex microstructure of brush particle hybrids in which long-range motions are constrained through entanglements and slow-diffusing particle cores. The rubbery-like response imparts BA/MMA copolymer brush material systems concurrent "shape-memory" and "self-heal" capability. This ability to "recall-and-repair" could find application in the design of functional hybrid materials, for example, for soft robotics.

6.
Expert Opin Ther Targets ; 27(8): 733-743, 2023.
Article En | MEDLINE | ID: mdl-37571851

INTRODUCTION: Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED: In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION: Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.


Glucosephosphate Dehydrogenase , Ovarian Neoplasms , Humans , Female , Glucosephosphate Dehydrogenase/metabolism , Ovarian Neoplasms/drug therapy , Pentose Phosphate Pathway , Glucose/metabolism
7.
Phys Med Biol ; 68(17)2023 08 23.
Article En | MEDLINE | ID: mdl-37524085

Objective.Boron neutron capture therapy (BNCT) is an advanced cellular-level hadron therapy that has exhibited remarkable therapeutic efficacy in the treatment of locally invasive malignancies. Despite its clinical success, the intricate nature of relative biological effectiveness (RBE) and mechanisms responsible for DNA damage remains elusive. This work aims to quantify the RBE of compound particles (i.e. alpha and lithium) in BNCT based on the calculation of DNA damage yields via the Monte Carlo track structure (MCTS) simulation.Approach. The TOPAS-nBio toolkit was employed to conduct MCTS simulations. The calculations encompassed four steps: determination of the angle and energy spectra on the nuclear membrane, quantification of the database containing DNA damage yields for ions with specific angle and energy, accumulation of the database and spectra to obtain the DNA damage yields of compound particles, and calculation of the RBE by comparison yields of double-strand break (DSB) with the reference gamma-ray. Furthermore, the impact of cell size and microscopic boron distribution was thoroughly discussed.Main results. The DSB yields induced by compound particles in three types of spherical cells (radius equal to 10, 8, and 6µm) were found to be 13.28, 17.34, 22.15 Gy Gbp-1for boronophenylalanine (BPA), and 1.07, 3.45, 8.32 Gy Gbp-1for sodium borocaptate (BSH). The corresponding DSB-based RBE values were determined to be 1.90, 2.48, 3.16 for BPA and 0.15, 0.49, 1.19 for BSH. The calculated DSB-based RBE showed agreement with experimentally values of compound biological effectiveness for melanoma and gliosarcoma. Besides, the DNA damage yield and DSB-based RBE value exhibited an increasing trend as the cell radius decreased. The impact of the boron concentration ratio on RBE diminished once the drug enrichment surpasses a certain threshold.Significance. This work is potential to provide valuable guidance for accurate biological-weighted dose evaluation in BNCT.


Boron Neutron Capture Therapy , Relative Biological Effectiveness , Boron Neutron Capture Therapy/methods , Boron , Gamma Rays , DNA Damage , Monte Carlo Method
8.
Mol Carcinog ; 62(11): 1700-1716, 2023 11.
Article En | MEDLINE | ID: mdl-37493109

Upstream-stimulating factor 1 (USF1) is a ubiquitously expressed transcription factor implicated in multiple cellular processes, including metabolism and proliferation. This study focused on the function of USF1 in glycolysis and the malignant development of prostate adenocarcinoma (PRAD). Bioinformatics predictions suggested that USF1 is poorly expressed in PRAD. The clinical PRAD samples revealed a low level of USF1, which was correlated with an unfavorable prognosis. Artificial upregulation of USF1 significantly repressed glycolytic activity in PRAD cells and reduced cell growth and metastasis in vitro and in vivo. Potential downstream genes of USF1 were probed by integrated bioinformatics analyses. The chromatin immunoprecipitation and luciferase assays indicated that USF1 bound to the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) promoter for transcription activation. Flightless I (FLII) was identified as the gene showing the highest degree of correlation with ALKBH5. As an m6A demethylase, ALKBH5 enhanced FLII mRNA stability by inducing m6A demethylation in an m6A-YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2)-dependent manner. Either silencing of ALKBH5 or FLII blocked the role of USF1 in PARD cells and restored glycolysis, cell proliferation, and invasion. This study demonstrates that USF1 activates ALKBH5 to stabilize FLII mRNA in an m6A-YTHDF2-dependent manner, thereby repressing glycolysis processes and the progression of PRAD.


Adenocarcinoma , Prostate , Male , Humans , Transcription Factors , Transcriptional Activation , Adenocarcinoma/genetics , Antibodies , Glycolysis/genetics , Microfilament Proteins , Trans-Activators , Upstream Stimulatory Factors/genetics , AlkB Homolog 5, RNA Demethylase/genetics , RNA-Binding Proteins
9.
Sci Adv ; 9(12): eadf4651, 2023 03 22.
Article En | MEDLINE | ID: mdl-36947616

Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.


Central Amygdaloid Nucleus , Retinal Ganglion Cells , Mice , Animals , Retinal Ganglion Cells/metabolism , Retina , Retinal Cone Photoreceptor Cells , Photoreceptor Cells, Vertebrate/metabolism , Light
10.
Exp Cell Res ; 421(1): 113376, 2022 12 01.
Article En | MEDLINE | ID: mdl-36209899

Mounting evidence indicates that activation of unfolded protein response (UPR) and metabolic reprogramming contribute to cancer cell migration and invasion, but the molecular mechanism of pro-EMT program through a coordinated action of UPR with metabolism has not been defined. In this study, we utilized ER stress-inducing reagent, thapsigargin (TG), to induced pharmacologic ER stress in lung cancer cells. Here. We report that the branch of UPR, IRE1α-XBP1 pathway plays a pivotal role in reprogramming lung cancer cell metabolism. At the molecular level, the expression of pyruvate dehydrogenase kinase-1 (PDK-1) is directly induced by XBP1 as a consequence of UPR activation, thus facilitating aerobic glycolysis and lactate production. We also demonstrated that PDK1 serves as a downstream element of UPR activation in induction of Snail and EMT program. In addition, PDK1-induced Snail was dependent on the lactate production derived from metabolic reprogramming. Our findings reveal a critical role of lactate in pro-invasion events and establishes a direct connection between ER-stress and metabolic reprogramming in facilitating cancer cell progression.


Carcinoma, Non-Small-Cell Lung , Endoribonucleases , Epithelial-Mesenchymal Transition , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , X-Box Binding Protein 1 , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial-Mesenchymal Transition/genetics , Lactates , Lung Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Thapsigargin , Unfolded Protein Response , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
11.
Synth Syst Biotechnol ; 7(4): 1133-1141, 2022 Dec.
Article En | MEDLINE | ID: mdl-36092272

Astaxanthin is a high value carotenoid with a broad range of commercial applications due to its superior antioxidant properties. In this study, ß-carotene-producing Yarrowia lipolytica XK17 constructed in the lab was employed for astaxanthin biosynthesis. The catalytic effects of ß-carotene ketolase CrtW and ß-carotene hydroxylase CrtZ from various species were investigated. The PspCrtW from Paracoccus sp. and HpCrtZ# from Haematococcus pluvialis were confirmed to be the best combination in converting ß-carotene. Several key bottlenecks in biomass and astaxanthin biosynthesis were effectively eliminated by optimizing the expression of the above enzymes and restoring uracil/leucine biosynthesis. In addition, the effects of astaxanthin biosynthesis on cell metabolism were investigated by integrated analysis of pathway modification and transcriptome information. After further optimization, strain DN30 was able to synthesize up to 730.3 mg/L astaxanthin in laboratory 5-L fermenter. This study provides a good metabolic strategy and a sustainable development platform for high-value carotenoid production.

12.
Exp Ther Med ; 24(2): 513, 2022 Aug.
Article En | MEDLINE | ID: mdl-35837041

Pinocembrin (PINO) is a natural flavonoid drug that possesses a range of biological activities, including antimicrobial, antioxidant and anti-inflammatory activities. The specific aim of the present study was to examine the pharmacological role of PINO in sepsis-mediated acute kidney injury (AKI), as well as to investigate the potential underlying mechanism. Human renal tubular epithelial cells (of the HK-2 cell line) were stimulated with lipopolysaccharide (LPS) for 24 h to simulate septic AKI in vitro, after which the experiments were repeated and the cells were pretreated with increasing concentrations of PINO (0, 50, 100 and 200 µg/ml). Using an MTT cell viability assay, PINO was revealed to be non-toxic to HK-2 cells. In LPS-treated HK-2 cells, PINO alleviated the loss of cell viability. Western blotting was used to analyze the expression levels of pro-inflammatory cytokines, including IL-1ß, IL-6 and TNF-α, and the results revealed that PINO decreased the expression levels of these cytokines in a concentration-dependent manner. Furthermore, malondialdehyde (MDA) and glutathione (GSH) activities were assessed using MDA and GSH assay kits and it was revealed that PINO decreased the significantly increased level of malondialdehyde, while it also decreased the reduction in the level of GSH in LPS-challenged HK-2 cells. In addition, a TUNEL assay and western blotting were performed to examine cell apoptosis, and PINO was identified to significantly inhibit the level of apoptosis in LPS-induced HK-2 cells. Subsequently, the expression levels of endoplasmic reticulum stress (ERS)-associated factors, including activating transcription factor 4, C/EBP homologous protein and phosphorylated/total eukaryotic translation initiation factor 2 subunit 1 were examined by western blotting and it was demonstrated that ERS was triggered in HK-2 cells exposed to LPS, although this was partly circumvented through PINO treatment in a concentration-dependent manner. Furthermore, after the addition of tunicamycin, which acts as an agonist of ERS, the aforementioned experiments were performed again. Tunicamycin led to partial abolition of the protective function of PINO against inflammation, oxidative stress and apoptosis in LPS-challenged HK-2 cells. Overall, the results of the present study demonstrated that PINO was able to ameliorate the injuries sustained by LPS-challenged HK-2 cells via modulating ERS to reduce inflammation, oxidative stress and apoptosis; therefore, PINO may be a novel candidate drug for treating septic AKI.

13.
Front Public Health ; 10: 890469, 2022.
Article En | MEDLINE | ID: mdl-35712318

Objectives: The effect of COVID-19 mitigation measures on different oral health care needs is unclear. This study aimed to estimate the effect of COVID-19 mitigation measures on different types of oral health care utilization needs and explore the heterogeneity of such effects in different countries by using real-time Internet search data. Methods: Data were obtained from Google Trends and other public databases. The monthly relative search volume (RSV) of the search topics "toothache," "gingivitis," "dentures," "orthodontics," and "mouth ulcer" from January 2004 to June 2021 was collected for analysis. The RSV value of each topics before and after COVID-19 was the primary outcome, which was estimated by regression discontinuity analysis (RD). The effect bandwidth time after the COVID-19 outbreak was estimated by the data-driven optimal mean square error bandwidth method. Effect heterogeneity of COVID-19 on dental care was also evaluated in different dental care categories and in countries with different human development index (HDI) rankings, dentist densities, and population age structures. Results: A total of 17,850 monthly RSV from 17 countries were used for analysis. The RD results indicated that advanced dental care was significantly decreased (OR: 0.63, 95% CI: 0.47-0.85) after the COVID-19 outbreak, while emergency dental care toothache was significantly increased (OR: 1.54, 95% CI: 0.99-2.37) 4 months after the COVID-19 outbreak. Compared to the countries with low HDI and low dentist density, the effect was much more evident in countries with high HDI and high dentist density. Conclusions: COVID-19 mitigation measures have different effects on people with various dental care needs worldwide. Dental care services should be defined into essential care and advanced care according to specific socioeconomic status in different countries. Targeted health strategies should be conducted to satisfy different dental care needs in countries.


COVID-19 , COVID-19/epidemiology , Dental Care , Disease Outbreaks , Humans , Toothache
14.
Sci Adv ; 8(23): eabm9027, 2022 06 10.
Article En | MEDLINE | ID: mdl-35675393

The increasing global prevalence of myopia calls for elaboration of the pathogenesis of this disease. Here, we show that selective ablation and activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) in developing mice induced myopic and hyperopic refractive shifts by modulating the corneal radius of curvature (CRC) and axial length (AL) in an opposite way. Melanopsin- and rod/cone-driven signals of ipRGCs were found to influence refractive development by affecting the AL and CRC, respectively. The role of ipRGCs in myopia progression is evidenced by attenuated form-deprivation myopia magnitudes in ipRGC-ablated and melanopsin-deficient animals and by enhanced melanopsin expression/photoresponses in form-deprived eyes. Cell subtype-specific ablation showed that M1 subtype cells, and probably M2/M3 subtype cells, are involved in ocular development. Thus, ipRGCs contribute substantially to mouse eye growth and myopia development, which may inspire novel strategies for myopia intervention.


Myopia , Retinal Ganglion Cells , Animals , Mice , Myopia/etiology , Photoreceptor Cells, Vertebrate , Retinal Ganglion Cells/physiology , Vision, Ocular
15.
Neurosci Bull ; 38(9): 992-1006, 2022 Sep.
Article En | MEDLINE | ID: mdl-35349094

Reduced levels of retinal dopamine, a key regulator of eye development, are associated with experimental myopia in various species, but are not seen in the myopic eyes of C57BL/6 mice, which are deficient in melatonin, a neurohormone having extensive interactions with dopamine. Here, we examined the relationship between form-deprivation myopia (FDM) and retinal dopamine levels in melatonin-proficient CBA/CaJ mice. We found that these mice exhibited a myopic refractive shift in form-deprived eyes, which was accompanied by altered retinal dopamine levels. When melatonin receptors were pharmacologically blocked, FDM could still be induced, but its magnitude was reduced, and retinal dopamine levels were no longer altered in FDM animals, indicating that melatonin-related changes in retinal dopamine levels contribute to FDM. Thus, FDM is mediated by both dopamine level-independent and melatonin-related dopamine level-dependent mechanisms in CBA/CaJ mice. The previously reported unaltered retinal dopamine levels in myopic C57BL/6 mice may be attributed to melatonin deficiency.


Melatonin , Myopia , Animals , Disease Models, Animal , Dopamine , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Retina , Sensory Deprivation
16.
Orphanet J Rare Dis ; 17(1): 139, 2022 03 28.
Article En | MEDLINE | ID: mdl-35346302

BACKGROUND: Skeletal deformity is characterized by an abnormal anatomical structure of bone and cartilage. In our previous studies, we have found that a substantial proportion of patients with skeletal deformity could be explained by monogenic disorders. More recently, complex phenotypes caused by more than one genetic defect (i.e., dual molecular diagnosis) have also been reported in skeletal deformities and may complicate the diagnostic odyssey of patients. In this study, we report the molecular and phenotypic characteristics of patients with dual molecular diagnosis and variable skeletal deformities. RESULTS: From 1108 patients who underwent exome sequencing, we identified eight probands with dual molecular diagnosis and variable skeletal deformities. All eight patients had dual diagnosis consisting of two autosomal dominant diseases. A total of 16 variants in 12 genes were identified, 5 of which were of de novo origin. Patients with dual molecular diagnosis presented blended phenotypes of two genetic diseases. Mendelian disorders occurred more than once include Osteogenesis Imperfecta Type I (COL1A1, MIM:166200), Neurofibromatosis, Type I (NF1, MIM:162200) and Marfan Syndrome (FBN1, MIM:154700). CONCLUSIONS: This study demonstrated the complicated skeletal phenotypes associated with dual molecular diagnosis. Exome sequencing represents a powerful tool to detect such complex conditions.


Neurofibromatosis 1 , Osteogenesis Imperfecta , Diagnosis, Dual (Psychiatry) , Humans , Osteogenesis Imperfecta/genetics , Phenotype , Exome Sequencing
17.
Front Chem ; 10: 849801, 2022.
Article En | MEDLINE | ID: mdl-35300383

Ligands on the surface of perovskite nanocrystals are important to stabilize the nanocrystal structure. However, the research of ligands on Mn2+ ion-doped CsPbCl3 nanocrystals (Mn: CsPbCl3 NCs), a promising candidate family for the lightning community, is relatively rare. Here, we demonstrate a new ligand modification strategy for preparing high-quality Mn: CsPbCl3 NCs by a simple hot-injection method. Thiophene derivative, for the first time, is applied as ligands for perovskite nanocrystals. The new ligands of thiophene derivatives passivate defects on the surface of NCs and enhance optical properties, originating from the sulfur in thiophene additives binding to the uncoordinated lead ions. The photoluminescence quantum yield of the modified Mn: CsPbCl3 NCs is 93% in comparison with 46% of the pristine counterparts, whose value is the highest to date for ligand-modified Mn: CsPbCl3 NCs. Meanwhile, the thermal, storage, and purification stability are also significantly improved. The performance of related LEDs is also investigated.

18.
NPJ Genom Med ; 7(1): 11, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-35169139

Pathogenic variants in MYH3 cause distal arthrogryposis type 2A and type 2B3 as well as contractures, pterygia and spondylocarpotarsal fusion syndromes types 1A and 1B. These disorders are ultra-rare and their natural course and phenotypic variability are not well described. In this study, we summarize the clinical features and genetic findings of 17 patients from 10 unrelated families with vertebral malformations caused by dominant or recessive pathogenic variants in MYH3. Twelve novel pathogenic variants in MYH3 (NM_002470.4) were identified: three of them were de novo or inherited in autosomal dominant way and nine were inherited in autosomal recessive way. The patients had vertebral segmentation anomalies accompanied with variable joint contractures, short stature and dysmorphic facial features. There was a significant phenotypic overlap between dominant and recessive MYH3-associated conditions regarding the degree of short stature as well as the number of vertebral fusions. All monoallelic variants caused significantly decreased SMAD3 phosphorylation, which is consistent with the previously proposed pathogenic mechanism of impaired canonical TGF-ß signaling. Most of the biallelic variants were predicted to be protein-truncating, while one missense variant c.4244T>G,p.(Leu1415Arg), which was inherited in an autosomal recessive way, was found to alter the phosphorylation level of p38, suggesting an inhibition of the non-canonical pathway of TGF-ß signaling. In conclusion, the identification of 12 novel pathogenic variants and overlapping phenotypes in 17 affected individuals from 10 unrelated families expands the mutation and phenotype spectrum of MYH3-associated skeletal disorders. We show that disturbances of canonical or non-canonical TGF-ß signaling pathways are involved in pathogenesis of MYH3-associated skeletal fusion (MASF) syndrome.

19.
Am J Hum Genet ; 109(2): 270-281, 2022 02 03.
Article En | MEDLINE | ID: mdl-35063063

In recent years, exome sequencing (ES) has shown great utility in the diagnoses of Mendelian disorders. However, after rigorous filtering, a typical ES analysis still involves the interpretation of hundreds of variants, which greatly hinders the rapid identification of causative genes. Since the interpretations of ES data require comprehensive clinical analyses, taking clinical expertise into consideration can speed the molecular diagnoses of Mendelian disorders. To leverage clinical expertise to prioritize candidate genes, we developed PhenoApt, a phenotype-driven gene prioritization tool that allows users to assign a customized weight to each phenotype, via a machine-learning algorithm. Using the ability to rank causative genes in top-10 lists as an evaluation metric, baseline analysis demonstrated that PhenoApt outperformed previous phenotype-driven gene prioritization tools by a relative increase of 22.7%-140.0% in three independent, real-world, multi-center cohorts (cohort 1, n = 185; cohort 2, n = 784; and cohort 3, n = 208). Additional trials showed that, by adding weights to clinical indications, which should be explained by the causative gene, PhenoApt performance was improved by a relative increase of 37.3% in cohort 2 (n = 471) and 21.4% in cohort 3 (n = 208). Moreover, PhenoApt could assign an intrinsic weight to each phenotype based on the likelihood of its being a Mendelian trait using term frequency-inverse document frequency techniques. When clinical indications were assigned with intrinsic weights, PhenoApt performance was improved by a relative increase of 23.7% in cohort 2 and 15.5% in cohort 3. For the integration of PhenoApt into clinical practice, we developed a user-friendly website and a command-line tool.


Genetic Diseases, Inborn/genetics , Hearing Loss, Sensorineural/genetics , Intellectual Disability/genetics , Machine Learning , Microcephaly/genetics , Nystagmus, Congenital/genetics , Scoliosis/genetics , Cohort Studies , Computational Biology , Databases, Genetic , Exome , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/pathology , Genetic Testing , Genotype , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/pathology , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Microcephaly/diagnosis , Microcephaly/pathology , Nystagmus, Congenital/diagnosis , Nystagmus, Congenital/pathology , Phenotype , Scoliosis/diagnosis , Scoliosis/pathology , Software , Exome Sequencing
20.
Materials (Basel) ; 16(1)2022 Dec 28.
Article En | MEDLINE | ID: mdl-36614634

One of the most important applications of photodetectors is as sensing units in imaging systems. In practical applications, a photodetector array with high uniformity and high performance is an indispensable part of the imaging system. Herein, a photodetector array (5 × 4) consisting of 20 photodetector units, in which the photosensitive layer involves preprocessing commercial ε-Ga2O3 films with high temperature annealing, have been constructed by low-cost magnetron sputtering and mask processes. The ε-Ga2O3 ultraviolet photodetector unit shows excellent responsivity and detectivity of 6.18 A/W and 5 × 1013 Jones, respectively, an ultra-high light-to-dark ratio of 1.45 × 105, and a fast photoresponse speed (0.14/0.09 s). At the same time, the device also shows good solar-blind characteristics and stability. Based on this, we demonstrate an ε-Ga2O3-thin-film-based solar-blind ultraviolet detector array with high uniformity and high performance for solar-blind imaging in optoelectronic integration applications.

...